伟德国际1946官方网

团队队伍

teaching staff

站内搜索

姓 名 于 洁 性 别
职 称 副教授 毕业学校
个人主页
联系方式
邮 箱 yujie@hust.edu.cn
通讯地址 武汉市伟德国际1946源自英国煤燃烧国家重点实验室409
个人资料简介
于洁,男,山东烟台人,伟德国际1946官方网副教授。2013年毕业于伟德国际1946源自英国煤燃烧国家重点实验室,2014-2017年在英国伦敦帝国理工学院化工系博士后研究。入选湖北省楚天学者以及伟德国际1946源自英国青年创新团队。目前以第一以及通迅作者共发表近40篇SCI论文,主要发表在能源与环境类二区期刊如Energy, Journal of cleaner production, Journal of hazardous materials, Chemosphere, Waste Management, Fuel, Energy & Fuels,Renewable and Sustainable Energy Reviews等, H-因子为15,google他引1800余次。三篇文章分别入选热点论文和高被引论文。承担了国家自然科学基金青年项目、面上项目、重点研发计划子课题两项,以及多项企业课题,总经费500余万。
1)生物质热解机制。应用实验室的金属网反应器(1000 K/s 升温速率),重点研究木质素和纤维素的一次热解机制,以及组份间的交互作用机制。研究热解压力以及颗粒密度对焦油一次与二次反应影响机制;与帝国理工学院在Fuel期刊发表系列文章,其中一篇论文连续进入高被引。从帝国理工学院引进了国际先进水平的快速热解金属网反应器、加压金属网反应器(全球仅有三台)以及加压流化床反应器,对固体燃料加压气化机理研究在世界上独树一帜。
2)塑料与轮胎高聚物的解聚研究。针对车用轮胎、复合包装塑料和电子废弃塑料等开展了热解与水热解聚机理研究,针对S、N等杂原子进行了原位催化脱除研究。与中石化研究院共同开发了先进的FT-ICR-MS焦油分析表征手段,在Renewable and Sustainable Energy Reviews、Waste Management等期刊发表多篇高水平论文。其中二篇论文分别入选热点与高被引论文,引用超过500次。
3)基于废塑料的碳材料的制备。正开展PVC,PET等含Cl和O塑料的热解交联制碳材料研究,以制备低成本高价值的碳材料用于电极等材料。
4)基于大数据的能源互联网多种能源耦合运行模拟。基于储能、可再生能源、和传统能源的耦合运行,基于不同能源的运行特性,开展耦合运行优化。主要采用Python等语言开发机器学习算法并基于运筹学方法进行建模,获得最优耦合运行方式。

招收热能工程、化学工程、环境工程方向的博士、学硕和专硕,诚挚欢迎各位同学推免或报考!与伦敦帝国理工学院、英国萨里大学以及西班牙塞尔维亚大学建立了长期合作交流。优秀员工可推荐帝国理工学院和萨里大学等英国高校进行进行联合培养或推荐攻读博士学位。

教育及工作经历

    2018.11—至今       伟德国际1946源自英国,副教授
    2017.03—2018.10    伟德国际1946源自英国,讲师
    2014.11—2017.02    伦敦帝国理工学院,博士后,合作导师:Marcos Millan
    2009.09—2013.06    伟德国际1946源自英国,热能工程专业,博士

研究方向

    1、生物质热解气化研究;
    2、聚合物制备碳材料研究;
    3、燃烧数值模拟;
    4、新型电力系统研究

科研项目

    科研项目:
    1、    危废热利用过程中污染物迁移转化机制 国家重点研发计划(科技部)子任务主持  115万 2018.12-2022.12
    2、    煤粉热解活性还原组份生成及反应机制 国家重点研发计划(科技部) 子任务主持72.35万 2018.05-2020.10
    3、    废旧轮胎催化热解过程中有机硫化物与催化剂和特征主体组份交互作用机制 国家自然科学基金(青年项目)主持  25万 2019.01-2021.12
    4、    生活垃圾分类回收,梯级利用技术研究 主持 武汉市 (5万)
    5、    企业项目:湖北金盛兰120万吨球团SNCR数值模拟 主持(8万)
    6、    企业项目:燃烧电厂SCR机组氨逃逸迁移、危害及防治技术研究辅助研究项目 主持(26万)

代表性论文与专利

    代表性论文:
    第一及通讯作者
    [1]    Yu, J., D. Wang, and L. Sun, The pyrolysis of lignin: Pathway and interaction studies. Fuel, 2021. 290.
    [2]    Wei, X., et al., New insights into the pyrolysis behavior of polycarbonates: A study based on DFT and ReaxFF-MD simulation under nonisothermal and isothermal conditions. Energy and Fuels, 2021. 35(6): p. 5026-5038.
    [3]    Sun, L., et al., Preparation of sorbents derived from bamboo and bromine flame retardant for elemental mercury removal. Journal of Hazardous Materials, 2021. 410.
    [4]    Han, Y., et al., Study on catalytic pyrolysis mechanism of natural rubber (NR) over Zn-modified ZSM5 catalysts. Journal of the Energy Institute, 2021. 94: p. 210-221.
    [5]    Yu, J., et al., The Interaction of NH4HSO4 with Vanadium-Titanium Catalysts Modified with Molybdenum and Tungsten. Energy and Fuels, 2020. 34(2): p. 2107-2116.
    [6]    Yu, J., CHAPTER 7: Catalysis in Modern Bio-refineries: Towards a New Bio-energy Paradigm. RSC Energy and Environment Series, 2020. 2020-January(27): p. 180-201.
    [7]    Chen, T., et al., Catalytic performance and debromination of Fe–Ni bimetallic MCM-41 catalyst for the two-stage pyrolysis of waste computer casing plastic. Chemosphere, 2020. 248.
    [8]    Bikane, K., et al., Early-stage kinetics and char structural evolution during CO2 gasification of Morupule coal in a wire-mesh reactor. Chemical Engineering Journal, 2020.
    [9]    Bikane, K., et al., Linking char reactivity to structural and morphological evolution during high pressure pyrolysis of Morupule coal. Chemical Engineering Science: X, 2020. 8.
    [10]    Yu, J., et al., Experimental research on denitrification and elemental mercury removal by Surface Dielectric Barrier Discharge. Process Safety and Environmental Protection, 2019. 125: p. 307-316.
    [11]    Yu, J., N. Paterson, and M. Millan, The primary products of cellulose pyrolysis in the absence of extraparticle reactions. Fuel, 2019. 237: p. 911-915.
    [12]    Yu, J., J.A. Odriozola, and T.R. Reina, Dry reforming of ethanol and glycerol: Mini-review. Catalysts, 2019. 9(12).
    [13]    Yu, J., et al., Catalytic pyrolysis of rubbers and vulcanized rubbers using modified zeolites and mesoporous catalysts with Zn and Cu. Energy, 2019. 188.
    [14]    Ma, C., et al., The behavior of heteroatom compounds during the pyrolysis of waste computer casing plastic under various heating conditions. Journal of Cleaner Production, 2019. 219: p. 461-470.
    [15]    Yu, J., et al., Influence of temperature and particle size on structural characteristics of chars from Beechwood pyrolysis. Journal of Analytical and Applied Pyrolysis, 2018. 130: p. 249-255.
    [16]    Ma, C., et al., Influence of Fe based ZSM-5 catalysts on the vapor intermediates from the pyrolysis of brominated acrylonitrile-butadiene-styrene copolymer (Br-ABS). Fuel, 2018. 230: p. 390-396.
    [17]    Liu, S., et al., Rubber pyrolysis: Kinetic modeling and vulcanization effects. Energy, 2018. 155: p. 215-225.
    [18]    Yu, J., et al., Cellulose, xylan and lignin interactions during pyrolysis of lignocellulosic biomass. Fuel, 2017. 191: p. 140-149.
    [19]    Ma, C., et al., Pyrolysis-catalytic upgrading of brominated high impact polystyrene over Fe and Ni modified catalysts: Influence of HZSM-5 and MCM-41 catalysts. Polymer Degradation and Stability, 2017. 146: p. 1-12.
    [20]    Ma, C., et al., Catalytic pyrolysis of flame retarded high impact polystyrene over various solid acid catalysts. Fuel Processing Technology, 2017. 155: p. 32-41.
    [21]    Yu, J., et al., Study on the behavior of heavy metals during thermal treatment of municipal solid waste (MSW) components. Environmental Science and Pollution Research, 2016. 23(1): p. 253-265.
    [22]    Yu, J., et al., Thermal degradation of PVC: A review. Waste Management, 2016. 48: p. 300-314.
    [23]    Yu, J., et al., Mechanism on heavy metals vaporization from municipal solid waste fly ash by MgCl2•6H2O. Waste Management, 2016. 49: p. 124-130.
    [24]    Ma, C., et al., Influence of Zeolites and Mesoporous Catalysts on Catalytic Pyrolysis of Brominated Acrylonitrile-Butadiene-Styrene (Br-ABS). Energy and Fuels, 2016. 30(6): p. 4635-4643.
    [25]    Ma, C., et al., Chemical recycling of brominated flame retarded plastics from e-waste for clean fuels production: A review. Renewable and Sustainable Energy Reviews, 2016. 61: p. 433-450.
    [26]    Chen, Z., et al., Gasification of torrefied kitchen waste: release of sodium and its influence on the formation of gasification products. Asia-Pacific Journal of Chemical Engineering, 2016. 11(5): p. 785-794.
    [27]    Yu, J., et al., Detoxification of ashes from a fluidized bed waste incinerator. Chemosphere, 2015. 134: p. 346-354.
    [28]    Yu, J., et al., Removal of toxic and alkali/alkaline earth metals during co-thermal treatment of two types of MSWI fly ashes in China. Waste Management, 2015. 46: p. 287-297.
    [29]    Yu, J., et al., New method of quantitative determination of the carbon source in blast furnace flue dust. Energy and Fuels, 2014. 28(11): p. 7235-7242.
    [30]    Yu, J., et al., Physical and chemical characterization of ashes from a municipal solid waste incinerator in China. Waste Management and Research, 2013. 31(7): p. 663-673.
    [31]    Yu, J., et al., Kinetic vaporization of heavy metals during fluidized bed thermal treatment of municipal solid waste. Waste Management, 2013. 33(2): p. 340-346.
    [32]    Yu, J., et al., Vaporization of heavy metals during thermal treatment of model solid waste in a fluidized bed incinerator. Chemosphere, 2012. 86(11): p. 1122-1126.

所获荣誉和奖励

    1、    2022年首届老员工低碳循环科技创新大赛一等奖
    2、    2021年全国大学节能减排社会实践与科技竞赛二等奖
    3、    2020年全国大学节能减排社会实践与科技竞赛一等奖
    4、    校优秀班主任