伟德国际1946官方网

团队队伍

teaching staff

站内搜索

副教授

当前位置: 首 页 > 团队队伍 > 工程热物理系 > 副教授 > 正文
姓 名 隆瑞 性 别
职 称 副教授 毕业学校
个人主页 http://orcid.org/0000-0003-4911-1716
联系方式
邮 箱 R_Long@hust.edu.cn
通讯地址 伟德国际1946源自英国新能源大楼N1008室
个人资料简介
隆瑞,伟德国际1946官方网副教授,博士生导师,国际期刊《Frontiers in Energy Research》副主编(Associate Editor)。主要从事可再生能源及低品位能量利用、氢能与电化学储能、电子器件热管理及热侦测、AI for science等方面研究。主持国家自然科学基金面上、青年项目及企业技术研发项目,参与国家重点研发计划、国家自然科学基金重点项目等相关研究。以第一作者或通讯作者身份在National Science Review, Nano Energy,Chemical Engineering Journal, Journal of Power Sources, Desalination, Energy Conversion and Management等能源工程领域发表SCI论文60余篇,出版学术专著1部,曾获得湖北省科学技术进步奖一等奖,中国电力科学技术进步奖一等奖、中国机械工业科学技术奖科技进步奖二等奖等奖项。
研究小组为每位员工制定个性化培养方案,鼓励研究生的创新思维,近年来指导的研究生中多人获得研究生国家奖学金。研究小组气氛融洽,成果丰硕,充满活力,期待同学们加入!
邮箱:R_Long@hust.edu.cn
办公室:伟德国际1946源自英国新能源大楼N1008室

教育及工作经历

    2019.11至今  伟德国际1946源自英国,伟德国际1946官方网,工程热物理系,副教授
    2016.7-2019.10 伟德国际1946源自英国,伟德国际1946官方网,工程热物理系,讲师
    2011.9-2016.6 伟德国际1946源自英国,伟德国际1946官方网,工程热物理,博士
    2007.9-2011.6 伟德国际1946源自英国,伟德国际1946官方网,热能与动力工程,学士

研究方向

    1、 可再生能源及低品位热能利用
    2、 氢能与电化学储能
    3、 电子器件热管理及热侦测
    4、 AI for science

科研项目

    1、国家自然科学基金面上项目:“吸附-反电渗析”热力系统中能量转换特性与热质传递机理研究
    2、国家自然科学基金青年项目:基于膜蒸馏与反电渗析的低温余热利用的新型热力系统研究
    3、国家自然科学基金重点项目:基于斯特林热机的能量转换与传递过程基础问题研究
    4、国家自然科学基金重点项目:轻量化低脉动高可靠直驱式永磁电机系统基础科学问题与关键技术研究
    5、国家自然科学基金国际(地区)合作与交流项目:用于低品位热能收集的液态热电池中热伏打与热扩散效应的协同耦合机理和系统优化研究
    6、技术研究项目:防热/热控/能源一体化关键技术研究
    7、技术开发项目:高效换热器智能化设计及新产品开发
    8、技术研究项目:多维度氢储运系统耦合方法与低温储氢安全研究

代表性论文与专利

    1、学术专著
    《渗透热机》,隆瑞 著,伟德国际1946源自英国出版社,2022.
    2、期刊论文
    最新论文请见:https://www.researchgate.net/profile/Rui-Long-2/research
     2022年
    1. Li M, Zhao Y, Long R, Liu Z, Liu W. Metal foam packed adsorbent bed boosting the performance of the adsorption-based desalination and cooling system. Energy Conversion and Management.  2022; 254: 115250.
    2. Zhao Y, Li M, Long R, Liu Z, Liu W. Review of osmotic heat engines for low-grade heat harvesting. Desalination. 2022; 527: 115571.
    3. Chen X, Luo Z, Long R, Liu Z, Liu W.  Impacts of transmembrane pH gradient on nanofluidic salinity gradient energy conversion. Renewable Energy. 2022, 187: 440-449.
    4. Li M, Zhao Y, Long R, Liu Z, Liu W. Computational fluid dynamic study on the adsorption-based desalination and cooling system. Applied Thermal Engineering. 2022; 213:118724.
    5. Zhao Y, Liu Z, Li M, Long R, Li S, Liu Z, Liu W. Screening adsorbent-working solution pairs for adsorption-driven osmotic heat engines based on experimental water adsorption isotherm database and machine learning. Process Safety and Environmental Protection. 2022;168:22-31.
    6. Li M, Zhao Y, Long R, Liu Z, Liu W. Impacts of non-adsorbable gas on the adsorption-based desalination and cooling system with fin branch configurations. Applied Thermal Engineering. https://doi.org/10.1016/j.applthermaleng.2022.119565.
    7. 许巍, 赵俊伟, 袁本立, 隆瑞, 刘志春, 刘伟.飞行器热防护与利用一体化系统实验与模拟. 航空动力学报, 2022, 37(03): 555-563.
    2021年
    1. Long R, Wu F, Chen X, Liu Z, Liu W. Temperature-depended ion concentration polarization in electrokinetic energy conversion. International Journal of Heat and Mass Transfer, 2021; 168: 120842.
    2. Lai X, Long R, Liu Z, Liu W. Solar energy powered high-recovery reverse osmosis for synchronous seawater desalination and energy storage. Energy Conversion and Management. 2021; 228: 113665.
    3. Long R, Xia X, Zhao Y, Li S, Liu Z, Liu W. Screening metal-organic frameworks for adsorption-driven osmotic heat engines via grand canonical Monte Carlo simulations and machine learning. iScience. 2021; 24(1): 101914.
    4. Long R, Li M, Chen X, Liu Z, Liu W. Synergy analysis for ion selectivity in nanofluidic salinity gradient energy harvesting. International Journal of Heat and Mass Transfer, 2021; 171: 121126.
    5. Li M, Zhao Y, Long R, Liu Z, Liu W. Computational fluid dynamic study on adsorption-based desalination and cooling systems with stepwise porosity distribution. Desalination, 2021; 508: 115048.
    6. Long R, Zhao Y, Li M, Pan Y, Liu Z, Liu W. Evaluations of adsorbents and salt-methanol solutions for low-grade heat driven osmotic heat engines. Energy, 2021; 229: 120798.
    7. Zhao Y, Li M, Long R, Liu Z, Liu W. Dynamic modeling and analysis of an advanced adsorption-based osmotic heat engines to harvest solar energy. Renewable Energy,2021; 175:638-649.
    8. Li M, Zhao Y, Long R, Liu Z, Liu W. Gradient porosity distribution of adsorbent bed for efficient adsorption cooling. International Journal of Refrigeration, 2021; 128: 153-162.
    9. Li M, Zhao Y, Long R, Liu Z, Liu W. Field synergy analysis for heat and mass transfer characteristics in adsorption-based desalination and cooling systems. Desalination, 2021; 517: 115244.
    10. Zhao Y., Li M, Long R, Liu Z, Liu W. Advanced adsorption-based osmotic heat engines with heat recovery for low grade heat recovery. Energy Reports, 2021; 7: 5977-5987.
    11. Zhao J, Xu W, Kuang Z, Long R, Liu Z, Liu W. Segmental material design in thermoelectric devices to boost heat-to-electricity performance. Energy Conversion and Management, 2021;  247: 114754.
    12. Li J, Zhang Z, Zhao R, Zhang B, Liang Y, Long R, Liu W, Liu Z. Stack Thermo-Osmotic System for Low-Grade Thermal Energy Conversion. ACS Applied Materials & Interfaces, 2021; 13: 21371-21378.
     2020年
    1. Long R, Luo Z, Kuang Z, Liu Z, Liu W. Effects of heat transfer and the membrane thermal conductivity on the thermally nanofluidic salinity gradient energy conversion. Nano Energy. 2020;67:104284.
    2. Long R, Zhao Y, Kuang Z, Liu Z, Liu W. Hydrodynamic slip enhanced nanofluidic reverse electrodialysis for salinity gradient energy harvesting. Desalination. 2020;477:114263.
    3. Long R, Zhao Y, Luo Z, Li L, Liu Z, Liu W. Alternative thermal regenerative osmotic heat engines for low-grade heat harvesting. Energy. 2020;195:117042.
    4. Zhao Y, Luo Z, Long R, Liu Z, Liu W, Performance evaluations of an adsorption-based power and cooling cogeneration system under different operative conditions and working fluids, Energy. 2020;204:117993.
    5. Zhao Y, Li M, Long R, Liu Z, Liu W. Dynamic modelling and analysis of an adsorption-based power and cooling cogeneration system. Energy Conversion and Management. 2020; 222:113229.
    6. Li J., Long R., Zhang B., Yang R., Liu W., Liu Z., Nano Heat Pump Based on Reverse Thermo-osmosis Effect, The Journal of Physical Chemistry Letters , 11 (2020) 9856-9861.
     2019年
    1. Long R, Lai X, Liu Z, Liu W. Pressure retarded osmosis: Operating in a compromise between power density and energy efficiency. Energy. 2019;172:592-8.
    2. Kuang Z, Zhang D, Shen Y, Long R, Liu Z, Liu W. Bioinspired fractal nanochannels for high-performance salinity gradient energy conversion. Journal of Power Sources. 2019;418:33-41.
    3. Lai X, Yu M, Long R, Liu Z, Liu W. Dynamic performance analysis and optimization of dish solar Stirling engine based on a modified theoretical model. Energy. 2019;183:573-83.
    4. Lai X, Yu M, Long R, Liu Z, Liu W. Clean and stable utilization of solar energy by integrating dish solar Stirling engine and salinity gradient technology. Energy. 2019;182:802-13.
    5. Long R, Kuang Z, Liu Z, Liu W, Ionic thermal up-diffusion in nanofluidic salinity gradient energy harvesting, National Science Review,2019;6(6):1266-73.
    6. Kuang Z, Long R, Liu Z, Liu W.  Analysis of temperature and concentration polarizations for performance improvement in direct contact membrane distillation, International Journal of Heat and Mass Transfer. 2019; 145: 118724.
    7. Dai D, Liu Z, Yuan F, Long R, Liu W. Finite time thermodynamic analysis of a solar duplex Stirling refrigerator. Applied Thermal Engineering, 2019,156:597-605.
    8. Dai D, Liu Z, Yuan F, Long R, Liu W. An irreversible Stirling cycle with temperature difference both in non-isothermal and isochoric processes. Energy, 2019,186,115875.
    9. Li J, Gao S, Long R, Liu W, Liu W. Self-pumped evaporation for ultra-fast water desalination and power generation. Nano Energy, 2019,65,104059.
    2018年
    1. Long R, Liu Z, Liu W. Performance analysis for minimally nonlinear irreversible refrigerators at finite cooling power. Physica A, 2018, 496:137-146.
    2. Long R, Lai X, Liu Z, Liu W. Direct contact membrane distillation system for waste heat recovery: Modelling and multi-objective optimization. Energy, 2018, 148:1060-1068.
    3. Lai X, Long R, Liu Z, Liu W. A hybrid system using direct contact membrane distillation for water production to harvest waste heat from the proton exchange membrane fuel cell. Energy, 2018, 147:578-586.
    4. Long R, Kuang Z, Liu Z, Liu W. Reverse electrodialysis in bilayer nanochannels:salinity gradient-driven power generation, Physical Chemistry Chemical Physics, 2018, 20: 7295-7302.
    5. Long R, Li B, Liu Z, Liu W. Reverse electrodialysis: Modelling and performance analysis based on multi-objective optimization. Energy. 2018;151:1-10.
    6. Long R, Lai X, Liu Z, Liu W. A continuous concentration gradient flow electrical energy storage system based on reverse osmosis and pressure retarded osmosis. Energy.2018;152:896-905.
    7. Long R, Kuang Z, Liu Z, Liu W. Temperature regulated reverse electrodialysis in charged nanopores. Journal of Membrane Science. 2018;561:1-9.
    8. Long R, Li B, Liu Z, Liu W. Performance analysis of reverse electrodialysis stacks: Channel geometry and flow rate optimization. Energy. 2018;158:427-36.
    9. Lai X, Long R, Liu Z, Liu W. Stirling engine powered reverse osmosis for brackish water desalination to utilize moderate temperature heat. Energy. 2018;165:916-30.
    10. Dai D, Yuan F, Long R, Liu Z, Liu W. Imperfect regeneration analysis of Stirling engine caused by temperature differences in regenerator. Energy Conversion and Management, 2018, 158:60-69.
    11. Dai D, Yuan F, Long R, Liu Z, Liu Z. Performance analysis and multi-objective optimization of a Stirling engine based on MOPSOCD. International Journal of Thermal Sciences, 2018, 124:399-406
    12. Rui Long, Zhengfei Kuang, BaodeLi, Zhichun. Liu, Wei Liu. Exergy analysis andperformance optimization of Kalina cycle system 11 (KCS-11) for low grade wasteheat recovery. 10th InternationalConference on Applied Energy (ICAE2018), 22-25 August 2018, Hong Kong, China.
    2017年
    1. Long R, Li B, Liu Z, Liu W. Hybrid membrane distillation-reverse electrodialysis electricity generation system to harvest low-grade thermal energy. Journal of Membrane Science. 2017;525:107-15.
    2016年
    1. Long R, Liu W. Efficiency and its bounds of minimally nonlinear irreversible heat engines at arbitrary power. Physical Review E. 2016;94(5):052114.
    2. Long R, Li B, Liu W. Performance analysis for Feynman's ratchet as a refrigerator with heat leak under different figure of merits. Applied Mathematical Modelling. 2016;40(23–24):10437-46.
    3. Long R, Li BD, Liu ZC, Liu W. Ecological analysis of a thermally regenerative electrochemical cycle, Energy, 2016; 107: 95-102.
    4. Long R, Li BD, Liu ZC, Liu W. Performance analysis of a dual loop thermally regenerative electrochemical cycle for waste heat recovery, Energy, 2016; 107: 388-395.
    5. Long R, Li BD, Liu ZC, Liu W. Performance analysis of a solar-powered electrochemical refrigerator, Chemical Engineering Journal, 2016; 284:325-332.
    6. Long R, Liu W. Ecological optimization and coefficient of performance bounds for general refrigerators, Physica A, 2016; 443:14-21.
    7. Li BD,Long R,Liu ZC,Liu W. Performance analysis of a thermally regenerative electrochemical refrigerator. Energy,2016,112:43-51.
    2015年
    1. Long R, Li BD, Liu ZC, Liu W. Performance analysis of a thermally regenerative electrochemical cycle for harvesting waste heat, Energy, 2015; 87: 463-469.
    2. Long R, Li BD, Liu ZC, Liu W. Performance analysis of a solar-powered solid state heat engine for electricity generation, Energy, 2015; 93:165-172.
    3. Long R, Li BD, Liu ZC, Liu W. Multi-objective optimization of a continuous thermally regenerative electrochemical cycle for waste heat recovery, Energy, 2015;93:1022-1029.
    4. Long R, Li BD, Liu ZC, Liu W. A hybrid system using a regenerative electrochemical cycle to harvest waste heat from the proton exchange membrane fuel cell, Energy, 2015;93: 2079-2086.
    5. Long R, Liu W. Unified trade-off optimization for general heat devices with nonisothermal processes. Physical Review E, 2015; 91(4):042127.
    6. Long R, Liu W. Performance of quantum Otto refrigerators with squeezing, Physical Review E, 2015; 91(6):062137.
    7. Long R, Liu W. Performance of micro two-level heat devices with prior information, Physics Letters A, 2015, 379:1979-1982.
    8. Long R, Liu W. Ecological optimization for general heat engines. Physica A, 2015; 434:232-239.
    9. Long R, Liu W. Coefficient of performance and its bounds with the figure of merit for a general refrigerator. Physica Scripta, 2015; 90(2):025207.
    2014年
    1. Long R, Bao YJ, Huang XM, Liu W. Exergy analysis and working fluid selection of organic Rankine cycle for low grade waste heat recovery. Energy, 2014; 73:475-483.
    2. Long R, Liu Z, Liu W. Performance optimization of minimally nonlinear irreversible heat engines and refrigerators under a trade-off figure of merit. Physical Review E, 2014; 89(6):062119.
    3. Long R, Liu W. Coefficient of performance and its bounds for general refrigerators with nonisothermal processes. Journal of Physics A: Mathematical and Theoretical, 2014; 47(32):325002.

所获荣誉和奖励

    1、湖北省科学技术进步奖一等奖
    2、中国电力科学技术进步奖一等奖
    3、伟德国际1946源自英国教师教学竞赛优秀奖
    4、伟德国际1946源自英国教学质量二等奖
    5、伟德国际1946源自英国优秀教师班主任